

 Navigation

 	
 index

 	
 next |

 	doublex 1.7.2 documentation

pyDoubles

	Overview
	What is pyDoubles?

	Supported test doubles
	Stub

	Spy

	Mock

	New to test doubles?

	Why another framework?

	Documentation
	Import the framework in your tests

	Which doubles do you need?
	Stubs

	Spies

	Mocks

	More documentation

	Support
	Free support

	Commercial support

 Copyright 2013, David Villa Alises.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	doublex 1.7.2 documentation

Overview

What is pyDoubles?

pyDoubles is a test doubles framework for the Python platform. Test doubles frameworks are
also called mocking frameworks.pyDoubles can be used as a testing tool or as a
Test Driven Development tool.

It generates stubs, spies, and mock objects usinga fluent interface that will make
your unit tests more readable. Moreover, it’s been designed to make your tests less
fragile when possible.

The development of pyDoubles has been completely test-drivenfrom scratch. The project is
under continuous evolution, but youcan extend the framework with your own
requirements. The codeis simple and well documented with unit tests.

Supported test doubles

Find out what test doubles are according to Gerard Meszaros [http://xunitpatterns.com/Test%20Double.html]. pyDoublesoffers mainly three kind of
doubles:

Stub

Replaces the implementation of one or more methods in theobject instance which plays the
role of collaborator or dependency,returning the value that weexplicitly write down in
the test. A stub is actually a method but itis also common to use the noun stub for a
class with stubbed methods.The stub does not have any kind or memory.

Stubs are used mainly for state validation or along with spies or mocks.

Spy

Replaces the implementation as a stub does, but it is also able to register and remember
what methods are called during the testexecution and how they are invoked.

They are used for interaction/behavior verification.

Mock

Contains the same features than the Stub and therefore the Spy,but it is very strict in
the behavior specification itshould expect from the System Under Tests. Before calling
anymethod in the mock object, the framework should be told (in the test)which methods we
expect to be called in order for them to succeed.Otherwise, the test will fail with an
“UnexpectedBehavior” exception.

Mock objects are used when we have to be very precise in thebehavior
specification. They usually make the tests more fragilethan a spy but still are
necessary in many cases. It is common touse mock objects together with stubs in tests.

New to test doubles?

A unit test is comprised of three parts: Arrange/Act/Assert orGiven/When/Then or whatever
you want to call them. The scenariohas to be created, exercised, and eventually we verify
thatthe expected behavior happened. The test doubles framework isused to create the
scenario (create the objects), and verify behaviorafter the execution but it does not
make sense to invoketest doubles’ methods in the test code. If you call the doubles’
methods in the test code, you are testingthe framework itself, which has been already
tested(better than that, we crafted it using TDD). Make surethe calls to the doubles’
methods happen in your production code.

Why another framework?

pyDoubles is inspired in mockito [http://mockito.org] and jMock [http://jmock.org]
for Java, andalso inspired in Rhino.Mocks [http://ayende.com/Wiki/Rhino+Mocks.ashx]
for .Net. There are otherframeworks for Python that work really well, but after sometime
using them, we were not really happy with the syntaxand the readability of the
tests. Fragile tests were alsoa problem. Some well-known frameworks available for Python
are: mocker [http://labix.org/mocker], mockito-python [http://code.google.com/p/mockito-python/], mock [http://code.google.com/p/mock/],
pymox [http://code.google.com/p/pymox/wiki/MoxDocumentation].

pyDoubles is open source and free software, released under the Apache License Version 2.0

Take a look at the project’s blog [http://www.iexpertos.com/blog?cat=10]

 Copyright 2013, David Villa Alises.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	doublex 1.7.2 documentation

Documentation

class SimpleExample(unittest.TestCase):
 def test_ask_the_sender_to_send_the_report(self):
 sender = spy(Sender())
 service = SavingsService(sender)

 service.analyze_month()
 assert_that_method(sender.send_email).was_called(
).with_args('reports@x.com', ANY_ARG)

Import the framework in your tests

import unittest
from doublex.pyDoubles import *

If you are afraid of importing everything from the pyDoubles.framework module, you can use
custom imports, although it has been carefully designed to not conflict with your own
classes:

import unittest
from doublex.pyDoubles import stub, spy, mock
from doublex.pyDoubles import when, expect_call, assert_that_method
from doublex.pyDoubles import method_returning, method_raising

You can import Hamcrest [http://code.google.com/p/hamcrest/] matchers which
are fully supported:

from hamcrest import *

Which doubles do you need?

You can choose to stub out a method in a regular object instance, to stub the whole
object, or to create three types of spies and two types of mock objects.

Stubs

There are several ways to stub out methods.

Stub out a single method

If you just need to replace a single method in the collaborator object and you don’t care
about the input parameters, you can stub out just that single method:

collaborator = Collaborator() # create the actual object
collaborator.some_calculation = method_returning(10)

Now, when your production code invokes the method “some_calculation” in the collaborator
object, the framework will return 10, no matter what parameters are passed in as the
input.

If you want the method to raise an exception when called use this:

collaborator.some_calculation = method_raising(ApplicationException())

You can pass in any type of exception.

Stub out the whole object

Now the collaborator instance won’t be the actual object but a replacement:

collaborator = stub(Collaborator())

Any method will return “None” when called with any input parameters.
If you want to change the return value you can use the “when” sentence:

when(collaborator.some_calculation).then_return(10)

Now, when your production code invokes “some_calculation” method, the stub will return 10,
no matter what arguments are passed in. You can also specify different return values
depending on the input:

when(collaborator.some_calculation).with_args(5).then_return(10)
when(collaborator.some_calculation).with_args(10).then_return(20)

This means that “collaborator.some_calculation(5)” will return 10, and that it will return
20 when the input is 10. You can define as many input/output specifications as you want:

when(collaborator.some_calculation).with_args(5).then_return(10)
when(collaborator.some_calculation).then_return(20)

This time, “collaborator.some_calculation(5)” will return 10, and it will return 20 in any other case.

Any argument matches

The special keyword ANY_ARG is a wildcard for any argument in the
stubbed method:

when(collaborator.some_other_method).with_args(5, ANY_ARG).then_return(10)

The method “some_other_method” will return 10 as long as the first parameter is 5, no
matter what the second parameter is. You can use any combination of “ANY_ARG”
arguments. But remember that if all of them are ANY, you shouldn’t specify the arguments,
just use this:

when(collaborator.some_other_method).then_return(10)

It is also possible to make the method return exactly the first parameter passed in:

when(collaborator.some_other_method).then_return_input()

So this call: collaborator.some_other_method(10) wil return 10.

Matchers

You can also specify that arguments will match a certain function. Say that you want to
return a value only if the input argument contains the substring “abc”:

when(collaborator.some_method).with_args(
 str_containing("abc")).then_return(10)

Hamcrest Matchers

Since pyDoubles v1.2, we fully support Hamcrest [http://code.google.com/p/hamcrest/] matchers.
They are used exactly like pyDoubles matchers:

from hamcrest import *
from doublex.pyDoubles import *

def test_has_entry_matcher(self):
 list = {'one':1, 'two':2}
 when(self.spy.one_arg_method).with_args(
 has_entry(equal_to('two'), 2)).then_return(1000)
 assert_that(1000, equal_to(self.spy.one_arg_method(list)))

def test_all_of_matcher(self):
 text = 'hello'
 when(self.spy.one_arg_method).with_args(
 all_of(starts_with('h'), instance_of(str))).then_return(1000)
 assert_that(1000, equal_to(self.spy.one_arg_method(text)))

Note that the tests above are just showhing the pyDoubles framework working together with
Hamcrest, they are not good examples of unit tests for your production code.

The method assert_that comes from Hamcrest, as well as the matchers: has_entry, equal_to,
all_of, starts_with, instance_of. Notice that all_of and any_of, allow you to define more
than one matcher for a single argument, which is really powerful. For more informacion on
matchers, read this blog post [http://www.rubenbernardez.com/blog/2011/07/pydoubles-v1-2-released-hamcrest-compatibility/]

Stub out the whole unexisting object

If the Collaborator class does not exist yet, or you don’t want the framework to check
that the call to the stub object method matches the actual API in the actual object, you
can use an “empty” stub:

collaborator = empty_stub()
when(collaborator.alpha_operation).then_return("whatever")

The framework is creating the method “alpha_operation” dynamically and making it return
“whatever”.

The use of empty_stub, empty_spy or empty_mock is not recommended because you lose the API
match check. We only use them as the construction of the object is too complex among other
circumstances.

Spies

Please read the documentation above about stubs, because the API to define method
behaviors is the same for stubs and spies. To create the object:

collaborator = spy(Collaborator())

After the execution of the system under test, we want to validate
that certain call was made:

assert_that_method(collaborator.send_email).was_called()

That will make the test pass if method “send_email” was invoked one or more times, no
matter what arguments were passed in. We can also be precise about the arguments:

assert_that_method(collaborator.send_email).was_called().with_args("example@iexpertos.com")

Notice that you can combine the “when” statement with the called assertion:

def test_sut_asks_the_collaborator_to_send_the_email(self):
 sender = spy(Sender())
 when(sender.send_email).then_return(SUCCESS)
 object_under_test = Sut(sender)

 object_under_test.some_action()

 assert_that_method(sender.send_email).was_called().with_args("example@iexpertos.com")

Any other call to any method in the “sender” double will return “None” and will not
interrupt the test. We are not telling all that happens between the sender and the SUT, we
are just asserting on what we want to verify.

The ANY_ARG matcher can be used to verify the call as well:

assert_that_method(collaborator.some_other_method).was_called().with_args(5, ANY_ARG)

Matchers can also be used in the assertion:

assert_that_method(collaborator.some_other_method).was_called().with_args(5, str_containing("abc"))

It is also possible to assert that wasn’t called using:

assert_that_method(collaborator.some_method).was_never_called()

You can assert on the number of times a call was made:

assert_that_method(collaborator.some_method).was_called().times(2)
assert_that_method(collaborator.some_method).was_called(
).with_args(SOME_VALUE, OTHER_VALUE).times(2)

You can also create an “empty_spy” to not base the object in a certain instance:

sender = empty_spy()

The ProxySpy

There is a special type of spy supported by the framework which is the ProxySpy:

collaborator = proxy_spy(Collaborator())

The proxy spy will record any call made to the object but rather than replacing the actual
methods in the actual object, it will execute them. So the actual methods in the
Collaborator will be invoked by default. You can replace the methods one by one using the
“when” statement:

when(collaborator.some_calculation).then_return(1000)

Now “some_calculation” method will be a stub method but the remaining methods in the class
will be the regular implementation.

The ProxySpy might be interesting when you don’t know what the actual method will return
in a given scenario, but still you want to check that some call is made. It can be used
for debugging purposes.

Mocks

Before calls are made, they have to be expected:

def test_sut_asks_the_collaborator_to_send_the_email(self):
 sender = mock(Sender())
 expect_call(sender.send_email)
 object_under_test = Sut(sender)

 object_under_test.some_action()

 sender.assert_that_is_satisfied()

The test is quite similar to the one using a spy. However the framework behaves
different. If any other call to the sender is made during “some_action”, the test will
fail. This makes the test more fragile. However, it makes sure that this interaction is
the only one between the two objects, and this might be important for you.

More precise expectations

You can also expect the call to have certain input parameters:

expect_call(sender.send_email).with_args("example@iexpertos.com")

Setting the return of the expected call

Additionally, if you want to return anything when the expected call
occurs, there are two ways:

expect_call(sender.send_email).returning(SUCCESS)

Which will return SUCCESS whatever arguments you pass in, or:

expect_call(sender.send_email).with_args("wrong_email").returning(FAILURE)

Which expects the method to be invoked with “wrong_email” and will return FAILURE.

Mocks are strict so if you expect the call to happen several times, be explicit with
that:

expect_call(sender.send_email).times(2)

expect_call(sender.send_email).with_args("admin@iexpertos.com").times(2)

Make sure the “times” part is at the end of the sentence:

expect_call(sender.send_email).with_args("admin@iexpertos.com").returning('OK').times(2)

As you might have seen, the “when” statement is not used for mocks, only for stubs and
spies. Mock objects use the “expect_call” syntax together with the
“assert_that_is_satisfied” (instance method).

More documentation

The best and most updated documentation are the unit tests of the framework itself. We
encourage the user to read the tests and see what features are supported in every commit
into the source code repository:

	pyDoublesTests/unit.py [https://bitbucket.org/DavidVilla/python-doublex/src/tip/test/pyDoubles/unit_tests.py]

You can also read about what’s new in every release in the blog [http://www.iexpertos.com/blog?cat=10].

 Copyright 2013, David Villa Alises.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 previous |

 	doublex 1.7.2 documentation

Support

Free support

	Mailing list [http://groups.google.com/group/pydoubles]

	Issue tracker [https://bitbucket.org/DavidVilla/python-doublex/issues]

Commercial support

The development team of pyDoubles is a software company [http://www.iexpertos.com]
based in Spain. We are happy to help other companies with the usage and extension of
pyDoubles. If you want to have custom features or direct support, please contact us at
info@iexpertos.com

 Copyright 2013, David Villa Alises.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	doublex 1.7.2 documentation

Index

 Copyright 2013, David Villa Alises.
 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		doublex 1.7.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, David Villa Alises.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

